I have longtable
xxxxxxxxxx
\documentclass[12pt,a4paper]{article}
\usepackage{tabularray}
\usepackage{fouriernc}
\usepackage{mathtools}
\UseTblrLibrary{amsmath,
booktabs,
counter,
diagbox,
siunitx,
varwidth}
\usepackage{enumitem}
\usepackage{ninecolors}
\usepackage{amssymb}
\usepackage{siunitx}
\sisetup{output-decimal-marker={,}}
\usepackage[paperwidth=19cm, paperheight=26.5cm,
hmargin=1.7cm,
vmargin={1.8cm,1.7cm}]{geometry}
\newcounter{mycnta}
\newcommand{\mycnta}{\stepcounter{mycnta}\arabic{mycnta}}
\begin{document}
\begin{longtblr}[
caption={The function $y = \dfrac{(x-a)(x-b)}{(x-c)(x-d)}$ }]{
colspec = {cllcc},
cells={mode=dmath},
row{1}={mode=text},
}
Order & Function $y = f(x)$ & $y'= f'(x)$ & Point $A$ & Point $B$\\ \hline
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\end{longtblr}
\end{document}
show all 57 lines
From the second page, how can I repeat header like this
1 Answer
provide an answerI see that, add rowhead = 1
xxxxxxxxxx
\documentclass[12pt,a4paper]{article}
\usepackage{tabularray}
\usepackage{fouriernc}
\usepackage{mathtools}
\UseTblrLibrary{amsmath,
booktabs,
counter,
diagbox,
siunitx,
varwidth}
\usepackage{enumitem}
\usepackage{ninecolors}
\usepackage{amssymb}
\usepackage{siunitx}
\sisetup{output-decimal-marker={,}}
\usepackage[paperwidth=19cm, paperheight=26.5cm,
hmargin=1.7cm,
vmargin={1.8cm,1.7cm}]{geometry}
\newcounter{mycnta}
\newcommand{\mycnta}{\stepcounter{mycnta}\arabic{mycnta}}
\begin{document}
\begin{longtblr}[
caption={The function $y = \dfrac{(x-a)(x-b)}{(x-c)(x-d)}$ }]{
colspec = {cllcc},
cells={mode=dmath},
row{1}={mode=text},
rowhead = 1,
}
Order & Function $y = f(x)$ & $y'= f'(x)$ & Point $A$ & Point $B$\\ \hline
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\end{longtblr}
\end{document}
show all 58 lines