I have longtable ``` \documentclass[12pt,a4paper]{article} \usepackage{tabularray} \usepackage{fouriernc} \usepackage{mathtools} \UseTblrLibrary{amsmath, booktabs, counter, diagbox, siunitx, varwidth} \usepackage{enumitem} \usepackage{ninecolors} \usepackage{amssymb} \usepackage{siunitx} \sisetup{output-decimal-marker={,}} \usepackage[paperwidth=19cm, paperheight=26.5cm, hmargin=1.7cm, vmargin={1.8cm,1.7cm}]{geometry} \newcounter{mycnta} \newcommand{\mycnta}{\stepcounter{mycnta}\arabic{mycnta}} \begin{document} \begin{longtblr}[ caption={The function $y = \dfrac{(x-a)(x-b)}{(x-c)(x-d)}$ }]{ colspec = {cllcc}, cells={mode=dmath}, row{1}={mode=text}, } Order & Function $y = f(x)$ & $y'= f'(x)$ & Point $A$ & Point $B$\\ \hline \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \end{longtblr} \end{document} ``` From the second page, how can I repeat header like this   
I see that, add `rowhead = 1` ``` \documentclass[12pt,a4paper]{article} \usepackage{tabularray} \usepackage{fouriernc} \usepackage{mathtools} \UseTblrLibrary{amsmath, booktabs, counter, diagbox, siunitx, varwidth} \usepackage{enumitem} \usepackage{ninecolors} \usepackage{amssymb} \usepackage{siunitx} \sisetup{output-decimal-marker={,}} \usepackage[paperwidth=19cm, paperheight=26.5cm, hmargin=1.7cm, vmargin={1.8cm,1.7cm}]{geometry} \newcounter{mycnta} \newcommand{\mycnta}{\stepcounter{mycnta}\arabic{mycnta}} \begin{document} \begin{longtblr}[ caption={The function $y = \dfrac{(x-a)(x-b)}{(x-c)(x-d)}$ }]{ colspec = {cllcc}, cells={mode=dmath}, row{1}={mode=text}, rowhead = 1, } Order & Function $y = f(x)$ & $y'= f'(x)$ & Point $A$ & Point $B$\\ \hline \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\ \end{longtblr} \end{document} ```