add tag
Laurenso
I have longtable
```
\documentclass[12pt,a4paper]{article}
\usepackage{tabularray}
\usepackage{fouriernc}
\usepackage{mathtools}
\UseTblrLibrary{amsmath,
	booktabs,
	counter,
	diagbox,
	siunitx,
	varwidth}
	
\usepackage{enumitem}
\usepackage{ninecolors}
\usepackage{amssymb}
\usepackage{siunitx}
\sisetup{output-decimal-marker={,}}
\usepackage[paperwidth=19cm, paperheight=26.5cm,
hmargin=1.7cm,
vmargin={1.8cm,1.7cm}]{geometry}
\newcounter{mycnta}
\newcommand{\mycnta}{\stepcounter{mycnta}\arabic{mycnta}}
\begin{document}
	\begin{longtblr}[
			caption={The function $y = \dfrac{(x-a)(x-b)}{(x-c)(x-d)}$ }]{
			colspec = {cllcc},
		cells={mode=dmath},
		row{1}={mode=text},
		}
 Order & Function $y = f(x)$ &  $y'= f'(x)$ & Point $A$ & Point $B$\\ \hline
	\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
	\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
	\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
	\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
	\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
	\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
	\end{longtblr} 
	
\end{document}

```

From the second page, how can I repeat header like this 
![image.png](/image?hash=b0307017b61174f55e17f88c77119c2745183e0a54eabcfed0acd04c13f7ed31)

![image.png](/image?hash=97c03e54636c5101f96a6551870e5abd1516ca00bd3608c4aeb3b48477859ed7)

![image.png](/image?hash=52fe1377d03336cf8a0557150c96f826f6dbb6adf5322cdbbfcec2a798b465bb)
Top Answer
Laurenso
I see that, add `rowhead = 1` 
```
\documentclass[12pt,a4paper]{article}
\usepackage{tabularray}
\usepackage{fouriernc}
\usepackage{mathtools}
\UseTblrLibrary{amsmath,
	booktabs,
	counter,
	diagbox,
	siunitx,
	varwidth}
	
\usepackage{enumitem}
\usepackage{ninecolors}
\usepackage{amssymb}
\usepackage{siunitx}
\sisetup{output-decimal-marker={,}}
\usepackage[paperwidth=19cm, paperheight=26.5cm,
hmargin=1.7cm,
vmargin={1.8cm,1.7cm}]{geometry}
\newcounter{mycnta}
\newcommand{\mycnta}{\stepcounter{mycnta}\arabic{mycnta}}
\begin{document}
	\begin{longtblr}[
			caption={The function $y = \dfrac{(x-a)(x-b)}{(x-c)(x-d)}$ }]{
			colspec = {cllcc},
		cells={mode=dmath},
		row{1}={mode=text},
			rowhead = 1,
		}
 Order & Function $y = f(x)$ &  $y'= f'(x)$ & Point $A$ & Point $B$\\ \hline
	\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
	\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
	\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
	\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
	\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
	\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
\mycnta &y=\dfrac{(x+15) (x+50)}{(x+5) (x+10)} & y'=-\dfrac{50 \left(x^2+28 x+160\right)}{(x+5)^2 (x+10)^2} & (-20,-1) & (-8,-49) \\
	\end{longtblr} 
	
\end{document}

```

This room is for discussion about this question.

Once logged in you can direct comments to any contributor here.

Enter question or answer id or url (and optionally further answer ids/urls from the same question) from

Separate each id/url with a space. No need to list your own answers; they will be imported automatically.