add tag
Anonymous 1123
At [here]( is question and answers about draw some balls in a cylinder. I tried with `\usepackage{tikz-3dplot}`
		\begin{scope}[canvas is xy plane at z=0]
			\draw[dashed] (\tdplotmainphi:\myr) arc(\tdplotmainphi:\tdplotmainphi+180:\myr);
			\coordinate (O) at (0,0);
			\coordinate (A) at (\angA:\myr);
			\coordinate (B) at (\angB:\myr);
			\coordinate (M) at ($(A)!0.5!(B)$);
			\draw[thick] (\tdplotmainphi:\myr) coordinate(BR) arc(\tdplotmainphi:\tdplotmainphi-180:\myr)
			\begin{scope}[canvas is xy plane at z=\h/3]
			\coordinate (O_1) at (0,0);
		\begin{scope}[canvas is xy plane at z=2/3*\h]
			\coordinate (O_2) at (0,0);
		\begin{scope}[canvas is xy plane at z=\h]
			\coordinate (O') at (0,0);
			\coordinate (A') at (\angA:\myr);
			\coordinate (B') at (\angB:\myr);
			\coordinate (M') at ($(A')!0.5!(B')$);
			\draw[thick]  (O') circle[radius=\myr];
			\draw[dashed] (O) -- (O');
			\draw [thick](BR) -- (\tdplotmainphi:\myr) (BL) -- (\tdplotmainphi-180:\myr); 
		\coordinate (T) at ($ (O) !0.5! (O_1) $);
		\coordinate (T1) at ($ (O_1) !0.5! (O_2) $);
		\coordinate (T2) at ($ (O_2) !0.5! (O') $);	
		\foreach \v/\position in {O/below,O'/above} {\draw[draw =black, fill=black] (\v) circle (1pt) node [\position=0.2mm] {$\v$};
			\begin{scope}[tdplot_screen_coords, on background layer]
			\fill[ball color=orange!90, opacity=1.0] (T) circle (\myr); 
		\begin{scope}[tdplot_screen_coords, on background layer]
			\fill[ball color=green!90, opacity=1.0] (T1) circle (\myr); 
		\begin{scope}[tdplot_screen_coords, on background layer]
			\fill[ball color=blue!90, opacity=1.0] (T2) circle (\myr); 		\end{scope}
 How to draw this with another way?
![ScreenHunter 1074.png](/image?hash=4d6f39b242eb8adaa8fff4b2eca6c186d46c53e3373576c5a56c8d8b18fa5fd4)
Top Answer
I think your code is fine. This one is marginally shorter. 
\begin{tikzpicture}[tdplot_main_coords,line cap=round,line join=round,
	  declare function={r=1.5;h=6*r;}]
	\path foreach \Z in {1,2,3}
	 {(0,0,-r+2*\Z*r) coordinate (C\Z)}
	 (0,0,0) coordinate (B) (0,0,h) coordinate (T);
	\path[tdplot_screen_coords] (r,0,0) coordinate(rx); 
	\begin{scope}[canvas is xy plane at z=0]
		 \draw[dashed] let \p1=(rx),\n1={atan2(\y1,\x1)} in 
			($(\myB)+(\n1:r)$) arc[start angle=\n1,end angle=\n1+180,radius=r];
		 \draw let \p1=(rx),\n1={atan2(\y1,\x1)} in 
		 ($(\myB)+(\n1:r)$) arc[start angle=\n1,end angle=\n1-180,radius=r]
		 ($(\myB)+(rx)$) -- ($(\myT)+(rx)$)
		   ($(\myB)-(rx)$) -- ($(\myT)-(rx)$)
		   (\myT) circle[radius=r];
	 \foreach \Col [count=\Z] in {orange!90,green!90,blue!90}
	 {\shade[ball color=\Col] (C\Z) circle[radius=r];}
![Screen Shot 2021-01-12 at 9.23.11 PM.png](/image?hash=57acaeca8b5350521cf4577a14f9214f60dd31db5783db5d58b2bd38d90fce6a)

This room is for discussion about this question.

Once logged in you can direct comments to any contributor here.

Enter question or answer id or url (and optionally further answer ids/urls from the same question) from

Separate each id/url with a space. No need to list your own answers; they will be imported automatically.